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Abstract

This thesis presents a fully convolutional VGG-16 model with batch

normalization, as a baseline for deep learning in iconography research.

The model was trained with several strategies on the ArtDL data set

through the use of transfer learning, with two strategies thereof yield-

ing promising results. With the addition of class activation mapping,

a method from explainable AI, it was possible to explain the bases of

inference for the models. The class activation mappings showed that

the two most promising iterations of the model are capable of distin-

guishing saints based on mid-level features extracted in the layers of the

model. The model also exhibited promising results as a baseline for auto-

matic image tagging. All code used in the experiments can be found at:

https://github.com/christophermadsen/iconography_dl_baseline

https://github.com/christophermadsen/iconography_dl_baseline
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1 Introduction

In recent years research has made rapid progress towards solving the problem

of object recognition in natural world images, yet extreme domain shifts still

pose a problem, one example of such domains are historical artworks. An im-

portant branch within art history is that of iconography which studies the con-

nection between the visual content of artworks and that which it characterizes.

Iconography is an important study for interpreting the meaning of the artworks

including investigating the origin and diffusion over time and space of the repre-

sentations within. Furthermore, it also gives insight into influences across artists

and their works. Several artwork data sets have been created for the purpose of

academic research, but none with a specific focus upon the iconography. How-

ever, iconography has not been neglected and data sets such as Iconclass [3] and

IconArt [8] do provide sections dedicated to icons, such as saints. Recently The

ArtDL project [16] has supplemented researchers with extensive means to apply

deep learning techniques and support specifically iconography research through

a data set of artworks with image-level iconography tags. This data set was

constructed by collecting artworks containing tags for characters in Christian

art from various sources. The ArtDL project also provides a convolutional neu-

ral network classifier trained on ImageNet [5] and applied to the ArtDL data

through transfer learning.

1.1 Research Questions

Although the ArtDL project provides a trained model, it is at this time the only

published model trained specifically for the purpose of recognising characteri-

zations of saints in artworks through their respective iconography. To aid the

development of deep learning models for iconography research, the addition of

a baseline model will support the state-of-the-art of Milani et al [16] (ArtDL

project). A baseline will grant perspective of the criteria of a model for iconog-

raphy focused deep learning, with respect to Occam’s Razor. This thesis will

develop such a baseline through transfer learning with a focus on the following

research questions:

1. To what extend will the provided baseline be capable of classifying the

saints of the ArtDL data set correctly.
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2. Through the utilization of methods from explainable AI, will the bases of

inference be the distinct visual features from the respective iconography

of the saints?

1.2 Related Works

Transfer learning has in recent years proven to be a successful method for shift-

ing from real world data to the artwork domain for tasks such as real world ob-

ject detection and tagging in artworks [4,31], detecting people in artworks [30],

and detecting artwork style and genre [2]. In 2018, Gonthier et al. [8] applied

fine-tuned residual networks [11] and were able to present bounding boxes of

two icons, Saint Sebastian and the Crucifixion of Jesus. In 2020, Gonthier et al.

continued their work with multiple instance learning and an extremity increase

in the domain shift [9]. In 2019, Shen et al. [24] trained a residual network on

near duplicate patterns of the Brueghel data set [26], extracted with an origi-

nal variation of traditional computer vision methods. These duplicate patterns

are similar in nature to the distinctive features in the iconography of the saints

in the ArtDL data. As mentioned in Section 1.1 Milani et al. [16] provide the

state-of-the-art for iconography specific deep learning. They do this with a fully

convolutional ResNet50 [11] pretrained on the ImageNet data set and fine-tuned

on the ArtDL data set. Furthermore, they investigate the results through the

means of class activation mapping [33] which shows that the classifier is specif-

ically activated by visual features important to the iconography of the artwork

tag, e.g. the arrows in a painting depicting Saint Sebastian. This is the work

most closely related to that of this thesis.

2 Methods

The main methods consists of two convolutional neural network models, there-

fore this section will first give a theoretical foundation of this type of model

and afterwards iterate upon the more specific methods. Further information on

the architecture of these models, approach to model training and the chosen

method from explainable AI, class activation mapping, will be given in 3.
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2.1 Artificial Neural Networks

An artificial neural network consists of a circuit of neurons that have learnable

weights. Each neuron has an input and generally performs a dot product and is

followed by a non-linearity typically in the form of an activation function. One

such network is the simple feedforward network which is structured as an input

layer, several or no hidden layers and an output layer. See Figure 1. Layers

where every neuron has weights connected to each neuron in the following layer

is called a densely connected layer.

Figure 1: A regular 2-layer feedforward neural network where all layers are
densely connected. [6]

2.1.1 Forward pass

Getting the output of a neural network is known as the forward pass. In this

pass, the dot product of neurons and weights are calculated sequentially from

the input, through the hidden layers, to the output. If an activation function is

present in a layer, it is calculated in between the respective neuron dot products.

In an input with multiple features and layers with several neurons, these dot

products are calculated as matrix multiplications. An example of the forward

pass of a single layered, densely connected network can be seen in Equation 1.

y = f(X ·W1) ·W2 (1)

Where y is the output, X is a single sample input with X1...Xn as features and

Wi are the weight matrices of the layers. Here f denotes an activation function.

In this case we have two weight matrices, one between the input and the hidden
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layer, and one between the hidden layer and the output. In many cases where

a linear value is desired as output, no activation function is applied to the last

matrix multiplication with the output weights. However, in classification type

problems the output is often transformed with an activation function to produce

values between 0 and 1 to denote probabilities the input belongs to that class.

2.1.2 Backward pass

To update the weights and thus train the neural network, an algorithm known

as backpropagation is applied in what is called the backward pass. Backpropa-

gation computes the gradient of the weights with respect to a loss function, by

finding the derivative (dL/dW ) and updates the weights by subtracting/adding

the gradients. Here L is the loss function and W are the weights. This deriva-

tive is also called the gradient. For each layer the derivative and gradient is

calculated and the weights of the layer are updated. Which loss function is used

is dependent on the given task. For a classification task with multiple classes

typically cross entropy loss. Both convolutional models in this thesis employ

cross entropy looss, see Equation 2.

loss = −
M∑
c=1

yi,c ∗ log(pi,c) (2)

Here M is the number of classes, e.g. Mary, Jesus or Noah. log is the natural

logarithm. y is a binary indicator of whether the class label, c, is the correct

classification for sample i. p is the prediction or predicted probability that

sample i is of class c.

The process of updating the weights by adding/subtracting the gradient to

the weights is called gradient descent and is used for optimising neural networks.

The models in this thesis utilize stochastic gradient descent (SGD), see Equation

3.

W = Wold − η
dL

dW
(3)

In this equation, η denotes the learning rate, which helps converge to a local

minimum in the gradient descent. A good visualisation of gradient descent is

that of a landscape made up of the values of the loss function. Our current loss

is that of a ball starting on a hill and gradient descent helps us move the ball

to a valley of minimum loss, see Figure 2. The step size is computed by the

multiplication between the learning rate and the derivative.
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Figure 2: A landscape made up of loss values. The movement of the ball denotes
gradient descent. [1]

2.1.3 Activation functions

As mentioned in Section 2.1.1 the output after a multiplication with a weight

matrix is oftentimes transformed with an activation function. The activation

function introduces non-linearity which in turn introduces a higher degree of

complexity and is desirable when attempting to find non-linear patterns in data.

The activation function also makes the layer differentiable, which is important

in the use of gradient descent, see Equation 3. Furthermore, some activation

functions restrict values within a given range. This saves computational expense

and helps prevent vanishing gradients, a problem where gradients become negli-

gibly small in the backpropagation algorithm from Section 2.1.2. The models of

this thesis use rectified linear unit (ReLU) as activation function for the hidden

layers. ReLU is written:

f(x) = x+ = max(0, x) (4)

For the output, the models use the softmax function to restrict the predictions

within the range (0, 1) and sum to 1. Softmax is applied during training and

the output is used for measuring model accuracy. The function is written in

Equation 5. Here xi is an n-dimensional model output and xj is a value in xi.

Softmax(xi) =
exp(xi)∑
j exp(xj)

(5)
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2.2 Convolutional Models

A convolutional neural network (CNN) shares most of the methodology with

that of the regular densely connected, feedforward neural networks, described in

Section 2.1.1. However, it sets itself apart in several aspects, particularly in that

it utilizes convolutions in convolutional layers. Would one attempt to build a

densely connected network for image classification with images of 500x500 pixels

in RGB space, the number of input variables per sample would be 500∗500∗3 =

750000. This is an extreme feature space generated from an image with a

relatively low pixel count. Instead of attempting to learn an extreme amount of

weights for each neuron, the convolutional layer instead sequentially highlights

regions of the image and convolves it with the filters of the layer. The weights

to the next layer is connected to these filters rather than all pixels in the image.

If the filters of the layer is of 7x7x3, then rather than having 750000 weights

per neuron like a densely connected layer, the size would be 7 ∗ 7 ∗ 3 = 147 for

a single filter. Modern convolutional network frameworks allow many filters to

be applied and trained seamlessly in parallel.

2.2.1 The Convolutional Layer

The key layer of the CNN is the convolutional layer which convolves regions of

an image with the trainable weights of the filters in the layer. The equation of

a 2D convolution between an image and a filter, can be written:

y[i, j] =

∞∑
m=−∞

∞∑
m=−∞

h[m,n] · x[i−m, j − n] (6)

Here x represents the input image to be convolved with filter h giving image

y. Note that the indices i and j are flipped in the input image. If the filter is

of size 3x3 then the range of i and j is (-1, 1). In traditional computer vision,

filters were handcrafted by the engineer, this is however not the case in modern

methods where the filter is a set of trainable weights, updated through the

means of backpropagation. See Figure 3 for an intuitive depiction of how a

filter is convolved with an image.

Through convolutions with the filters, the convolutional layer is capable

of extracting both primitive and abstract features, depending on the position

of the layer in the network. Convolving an image with the Sobel filter is an

example of extracting such primitive features through the means of convolution.

The Sobel filter is a combination of two 3x3 filters Gx and Gy, see Table 1.
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Figure 3: An image being convolved with a filter. Note that the coordinates
have already been flipped. [12]

Convolving an image with filters Gx and Gy calculates an approximation of the

vertical and horizontal derivative, respectively. Combining the two convolutions

with G =
√
G2

x +G2
y gives us the Sobel filter, which in turn represents an

approximation of the gradient of the image intensity, thus it can be utilized

as an image edge detector, see Figure 4 for an example of the output of a

convolution with these filters.

Gx Gy
-1 0 1 1 2 1
-2 0 2 0 0 0
-1 0 1 -1 -2 -1

Table 1: The two 3x3 filters used in the Sobel filter.

Figure 4: An image of Saint Sebastian being convolved with the Sobel filter.
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2.2.2 Pooling and Batch Normalization

As convolutional layers extract features, they in essence summarize an image as

a feature map. However, such feature maps are sensitive to the location of the

features in an image. One method decreasing this sensitivity and thus increasing

the degree of local translation invariance is the addition of pooling layers. A

pooling layer performs a pooling operation over windows of a given size in the

feature map. A widely used layer of this type is max pooling [19], which is also

used in the models of this thesis. Max pooling creates a down sampling of the

feature map by extracting the maximum value in windows over the map. The

most common usage involves a window size of 2x2, effectively halving the size

of the feature map, see Figure 5. This kind of down sampling keeps the larger,

important structural elements while shedding finer details, which may not be

particularly important to the given task. With the introduction of translation

invariance, the model is thus less sensitive to features in an image undergoing

transformations such as cropping, shifting and rotation.

Figure 5: Max pooling from 4x4 to 2x2 with a stride of 2. [7]

A global average pooling layer (GAP) [15] is a pooling layer not unlike the

max pooling layer. However, instead of performing the max filter in windows of

the feature map, an entire feature map is summarized as its average value, see

Figure 6. This layer is not only useful in the context of CAMs, but like max

pooling, introduces translation invariance. Note that pooling layers are applied

after the introduction of non-linearity, see Section 2.1.3.

As mentioned in Section 2.1.1, the network input is fed from layer to layer

until the output is reached. As the weights of each layer is continuously up-

dated through the training procedure of gradient descent and backpropagation

(Section 2.1.2), the inputs to layers following the input layer are changed in

what is described as internal covariate shift. This phenomenon makes it harder

and slower to train deeper networks of many layers. To address this problem
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Figure 6: Global average pooling from 4x4 to 1x1. [28]

a trainable layer known as batch normalization [13] is often utilized. Batch

normalization is applied to the output of an activation function (ReLU) and is

generally expressed through three steps, see Equation 7.

z =
(x+ ∗ µ

σ2

)
∗ γ + β (7)

First the output is normalized according to the mean, µ and standard deviation

σ2. Secondly, it is multiplied with an arbitrary variable, γ. Finally, another ar-

bitrary variable, β, is added to the output. These 4 parameters are all trainable,

meaning they too will be optimized in the backward pass of the network. The

batch normalization process occurs per batch of data. Because the parameters

are included in the gradient process of backpropagation, it prevents outlying

large weights from overinfluencing the training process. It is also important to

note that some literature suggests that batch normalization does not deal with

internal covariate shift and instead is effective because it makes the training

landscape smoother (See Figure 2), which induces predictability and stability

of the gradients [22]. Batch normalization also ensures increased stability when

higher learning rates are introduced in SGD, see Section 2.1.2.

2.2.3 Depth and Residual Blocks

As previously mentioned in Section 2.2.1 the depth of a convolutional neural

network is important to the type of features extracted by a convolutional layer.

Layers placed early in the network extract primitive, low-level features, such as

lines and edges. Layers in the middle of a network typically extract features such

as textures or patterns. Deeper layers of the network extract high-level features

such as parts of objects or objects in the image. If a network is too shallow it
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is not able to extract and thus learn from higher level features. However, con-

structing a deep neural network poses its own caveats. The deeper a network is

constructed, the more difficult it becomes training due to the vanishing gradient

problem, described in section 2.1.3. In addition to rectified linear units for mit-

igation of vanishing gradients, an extremely important milestone in computer

vision and deep learning was the introduction of the deep residual network in

2015 by He et al [11]. This type of network utilizes what is known as residual

blocks (see Figure 7) and achieved a state-of-the-art results on ImageNet in 2016

with deep convolutional models of up to 152 layers deep.

Figure 7: The residual block introduced by He et al.

The residual block utilizes outputs from the previous layer and the layer

before that. This operation can be formulated as Equation 8.

H(x) = f(F (x) + x) (8)

Where f is the ReLU activation function. Given two layers, Layer 1 and

Layer 2, x is then the output of the layer previous to Layer 1. F (x) is the

result of x going through Layer 1, ReLU and then Layer 2. The procedure is

then: x is added to F (x) in what is known as the identity connection and ReLU

is applied. Although deceivingly simple, this method is powerful and strongly

mitigates the vanishing gradient problem and allows for training of much deeper

neural networks, especially in conjunction with other methods such as ReLU and

batch normalization.

3 Approach

This section describes the outline of the experimental setup. First an overview

of the data is presented. Secondly, an elaboration of the data pre-processing will
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be given. Thirdly, the architecture of the models and the application of transfer

learning will be explained. Lastly, the approach to explanation of model outputs

will be introduced.

3.1 Data

The data used in this thesis is a subset of the ArtDL paintings data set presented

by Milani et al. [16] The ArtDL data set is a collection of 42.479 paintings depict-

ing Christian figures, collected with the means of Iconclass. The large majority

of the images date back to the Renaissance of Europe. In the data set a myriad

of various art styles and mediums can be found, for instance murals, frescoes,

canvas paintings and polyptychs. The only constraint is that the artwork is a

painting and not a three-dimensional artwork, i.e sculptures. Roughly 60% of

the paintings are in colour and the remaining 40% in grayscale. The subset

of the data set used in this thesis consists of paintings depicting 10 classes in

the form of 10 saints from Christianity, see Figure 8. The 10 saints and thus

annotated classes are: Virgin Mary, Anthony of Padua, Saint Dominic,

Francis of Assisi, Saint Jerome, John the Baptist, Paul the Apostle,

Saint Peter, Saint Sebastian and Mary Magdalene. In each painting

at least one of these saints are depicted, but may contain multiple. To avoid

complicating the task, if a painting depicts several saints, only a single saint is

chosen as the annotation for the painting. The annotations are labels denoting

the presence of a given saint in the painting, but not a pixel-wise annotation

such as bounding boxes or other methods denoting the spatial location of the

saint in the painting.

3.2 Pre-processing

The data is prepared in three manners. First the painting is colour normalized

in each channel (RGB) by subtracting each channel by the mean of the channel

in the data set and dividing the result with the standard deviation of the channel

in the data set. This effectively standardizes the data to have a mean of 0 and a

standard deviation of 1 and generally helps training. The means and standard

deviations used are that of ImageNet, due to the utilization of layers pretrained

on ImageNet, see Section 3.7. The paintings are then padded to a square with a

constant value. Finally, they are resized to a fixed square size of 224x244. The

normalization step is a commonly employed method to center the input data,

which helps constraint gradients in gradient descent, see Section 2.1.2. Padding
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Figure 8: Example images of the ArtDL data set, each is a different saint.

the painting to a square prevents warping when the image is resized and has

negligible effects on training. Resizing is important for fitting an image to the

dimensions of the input layer of a neural network. In transfer learning (Section

3.7) this is important for properly utilizing potentially frozen layers early in the

network. Resizing also saves computational costs and reduces training time,

the latter being an especially attractive feature for the many-featured nature of

image data. In Figure 9 the pre-processing is visualised.

Figure 9: A painting undergoing normalization, square padding and resizing.
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3.3 Training Strategies

A good practice is to split the data set in training, validation and test sets.

This action is also performed on the data set used for this thesis. In Table 2

the distribution of images in the sets are shown.

Sets Mary Ant Dom Fran Jer John Paul Pet Seb Mag
Train 9513 115 234 784 939 783 419 949 448 727
Val 1189 14 30 98 117 97 52 118 56 90
Test 1189 14 29 98 118 99 52 119 56 90

Table 2: Data distribution in classes, by training, validation and test sets.

Observe that Virgin Mary has an overwhelming amount of samples compared

to that of the other classes in the data set. Ca. 64% of the sets consist of

paintings of Virgin Mary. Such an extreme imbalance in class distribution might

easily lead to model overfitting on the overrepresented class. To address this

problem, three separate strategies were employed. The first strategy involves

expanding the data set in such a manner that each class contains an equal

amount of paintings, matching the size of the largest class set, Virgin Mary.

This means the paintings in each class, aside from Virgin Mary, are duplicated

at random until the class set contains 9513 images. This strategy was employed

by Milani et al. [16] to train the model they provide and was the most successful

strategy for their model. The second strategy does not involve expansion of data,

rather it includes random erasing [32], a data augmentation technique which at

random, given a probability, covers a part of the painting with a rectangle given

a random dimension and scale within a range, see Figure 10.

Figure 10: Random erasing data augmentation.

This lowers the risk of the model overfitting on a class as well as a single

predominant feature in an image, see Section 3.6 for an example of such a case.

Furthermore, the second strategy also involves the addition of weights to the
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loss function of the network. The loss of each class is divided by a given weight

and the results are summed. The weights used in this case is the amount of

paintings in the Virgin Mary class set divided by the amount in each other class

set, respectively. See Table 3 for the weights. The third strategy employs the

methods of strategy 1 and random erasing from strategy 2.

Mary Ant Dom Fran Jer John Paul Pet Seb Mag
1 83 41 12 10 12 23 10 21 13

Table 3: Loss function weights (rounded) per class introduced to cross entropy
loss.

For the first and third training strategies an SGD learning rate of, η = 0.01,

is used in contrast to the lower η = 0.001 used in the second strategy. As

mentioned in Section 2.2.2 batch normalization allows for higher learning rates

in SGD. This effect is therefore exploited to make sure the model properly fits

to the training data. This is because expansion of the data also significantly

increases the duration of every pass through the data. The second strategy

handles less data and the duration of a single pass is significantly smaller, so it

does not need to exploit this effect.

3.4 VGG-16

In 2012, the first convolutional neural network to win the ImageNet Challenge

[21] was the so called AlexNet [14]. With a benchmark result of a top-5 error

of 15.3%, which was 10.8% lower than the runner up method. The main results

of the paper behind the model displayed the importance of depth, see Section

2.2.3. AlexNet was an 8 layer model employing convolutional layers, different

size filters (Section 2.2.1), max pooling (Section 2.2.2) and was trained on a

GPU. In 2014 a deeper model of 16 layers, VGG-16 [25], was introduced. VGG-

16 was based upon the architecture of AlexNet. However, it did not use varying

sizes of filters and instead constrained it to filters of size 3x3. VGG is a model

easily implemented relative to more modern models, for instance the residual

network, see Section 3.5. Each layer is only connected to the previous and

the next, without detours. This means the forward pass (Section 2.1.1) and

backward pass (Section 2.1.2) are also simple and straightforward to implement.

VGG-16 achieved a new benchmark of a top-5 error of 9.62% in the ImageNet

Challenge. See Figure 11 for an overview of the version of VGG-16 presented
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in the original paper.

Figure 11: Architecture of VGG-16 presented in the original paper. [17]

The original version of VGG-16 is presented in 5 convolutional blocks as

feature extractors and a classifier in the form of the final 3 densely connected

layers (Section 2.1). Aside from the first convolutional block, each block begins

with a max pooling layer mapping dimensions of the feature maps from the

previous block to the current block. The architecture of the original VGG-16 is

altered in a few ways to suite the needs of this thesis. The final classifier block

consisting of the 3 densely connected layers is replaced by a large convolutional

layer with an output size of 10, for the 10 classes in the data set. This effectively

makes the modified VGG-16 a fully convolutional model. The dimensions of the

layers can be seen in Figure 12.

Densely connected layers are interchangeable with convolutional layers if the

dimension are fitted correctly. Densely connected layers are prone to overfitting,

especially as the size increases. As described in Section 2.2 the amount of weights

in densely connected layers are at the extreme compared to convolutional layers.

Removing such a large amount of weights not only saves memory, but also speeds

up the training procedure. Furthermore, the convolutional layer also makes it

easy to implement class activation mapping, see Section 3.6. These reasons

are the bases of the choice of changing the layer for the modified VGG-16.

The final convolutional layer in the fifth block is also modified to fit the added

convolutional layer which serves as the classifier of the network. Between the

fifth block and the classifier a GAP layer is added, see Section 2.2.2. This layer

helps prevent overfitting and is a crucial layer in the implementation of class
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Figure 12: Representation of the fully convolutional VGG-16. Batch normal-
ization is not shown.

activation mapping. The final modification to the network is the implementation

of batch normalization layers after each convolutional layer, to allow for easier

training and mitigate overfitting, see Section 2.2.2. The final architecture sans

batch normalization can be seen in Figure 12.

3.5 Residual Network

The convolutional model employed, modified and fine-tuned by Milani et al [16]

is a 50 layer deep residual network (ResNet50), see Section 2.2.3. Like the fully

convolutional VGG-16 (Section 3.4) Milani et al. [16] has modified ResNet50 to

be fully convolutional and contains a GAP layer before the final classifier layer.

ResNet50 is structured in 4 stages where convolutional layers of a stage share the

same dimensions. This model also utilizes max pooling layers after each stage,

and batch normalization after each convolutional layer. Layers in a stage are

all connected as residual blocks with the signature identical connection of the

residual block. Before beginning the 4 stages of residual blocks, a convolutional
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layer and a max pooling layer follows the input layer, which is then connected

to the first stage of residual blocks. A visualization of the architecture can be

seen in Figure 13

Figure 13: Representation of the ResNet50 architecture used by Milani et al.
[16] Note that N, in the third stage denotes N amount of residual blocks. In
ResNet50, N = 6.

3.6 Class Activation Mapping

An unfortunate side-effect of the many parameters in a neural network is the

loss of inference transparency. By not being able to diagnose the basis of a

decision made by the neural network, it is difficult to assess whether or not the

network has a wrong basis of inference. An example is if a model has been

trained on images of Jesus Christ. Jesus is quite often depicted as crucified. In

this case the model may activate based on only the cross and not Jesus. This

raises the issue of whether the model is capable of recognising Jesus outside

the context of crucifixion. Class activation mapping (CAM) is a method of

identifying and inspecting such bases of inference of a model, in the form of an

activation heat map. This heat map can be overlapped with the input image for

a human decipherable visualisation of input regions that are important for the

prediction. To produce CAMs a GAP layer is added to the network before the

final output layer and its activation. The weights to the classes of the final layer

in the model is then mapped back to feature maps of the final convolutional

layer. The output produces a 14x14 grayscale heat map. This heat map is

then upscaled to the same width and height of the input image (painting) and
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overlapped. This method of implementing CAM to a model is based on the

Grad-CAM paper [23] and is used in the modified VGG-16 convolutional model

constructed in this thesis, see Section 3.4. See the title page and Section 4 for

examples of the CAMs produced by the models of this thesis.

3.7 Transfer Learning

Transfer learning is loosely based on transfer learning in psychological litera-

ture. In deep learning the embodiment of transfer learning is a methodology

involving using the layer weights of a pretrained model in a modified version of

the model or an entirely newly constructed model. After loading the weights in

the new model, there are generally three ways of proceeding. First approach is

using the pretrained layers for feature extraction. In this case the final layer of

the network is modified to fit the dimensions of the desired number of output

classes. The pretrained layers are then locked in a frozen state where no up-

dates are made to the weights through SGD, except the modified final layer, see

Section 2.1.2. The final layer is then fitted to the rest of the model and the new

data by running the training procedure over the data set. This is a successful

approach in data that is similar to the data of the task at hand. The second

approach involves freezing only a part of the pretrained layers and running the

training procedure again, like in the first approach. The third approach uses

the weights of the pretrained layers as initialization of the weights in the new

model, as opposed to random initialization. Each approach may be combined

in whatever way is desired for the task. Milani et al. [16] ran experiments which

showed freezing only the earlier layers of the ResNet50 model yielded the great-

est results. This is because the model is pretrained on ImageNet, which contains

real world image data and the ArtDL data set is an extreme domain shift in

the form of painted art. The VGG-16 model constructed in this thesis employs

two freezing strategies. First strategy is freezing only the layers within the

first and half of the second convolutional blocks. The first block is responsible

for primitive, low-level features such as lines and edges, see Sections 2.2.1 and

2.2.3 and the second block is responsible for mid-level features, such as textures.

Second strategy is identical to the first, but freezes the entirety of the second

convolutional block. The second block extracts low-level to mid-level features.

Figure 14 shows an example of features extracted by a VGG-16 model. Training

strategy 2 from Section 3.3 uses freezing strategy 1 and training strategies 1 and

3 use freezing strategy 2.
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Figure 14: Features extracted from an image of a car by the layers of a trained
VGG model. Left: Low-level features from early layers - lines and edges. Middle:
Mid-level features from layers in the middle - textures and shapes. Right: High-
level features from deeper layers - door, window and wheels.

4 Results

In this section an overview of the machine used for training the models will first

be given. The results of the training and validation will then be inspected and

evaluated. Finally, an evaluation and comparison of the trained models will be

based upon confusion matrices and metrics thereof. Further evaluation will be

based on a comparison of the CAMs of the model outputs and the state-of-the-

art provided by Milani et al. [16]

4.1 Setup

All experiments were run on a Windows 10 (64-bit) PC containing 16GB of

RAM, a 6-core AMD Ryzen 5 3600 CPU and a 8GB NVidia GeForce RTX

3070 GPU. All code was written in Python [27]. The deep learning framework

PyTorch [18] was used for all experiments and was installed to run on a GPU

with NVidia’s CUDA and cuDNN. Table 4 is an overview of the version of

Python and the essential libraries used.

4.2 Training and Validation

In all experiments an input data batch size was set to a fixed 8 samples and

loaded by 3 parallel workers. Each training experiment of the fully convolutional

VGG-16 model were allowed ca. 14 hours of run time. For training strategy 1

(Section 3.3) 36 epochs (pass through data) of the data were reached at the end
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Name Version
Python 3.9.1
CUDA 11.0
cuDNN 8.0.5
Torch 1.7.1+cu110
Torchvision 0.8.2+cu110
Numpy [10] 1.19.5
Pandas [29] 1.2

Table 4: Software versions

(a) (b)

Figure 15: Validation loss per epoch in strategy 1 (a) and strategy 2 (b).

of training, while strategy 2 was significantly faster and reached 200 epochs.

After each epoch of training, the models were evaluated on the validation set

(Section 3.3) in terms of cross entropy loss and accuracy. In Figure 15 the

validation loss per epoch of strategy 1 and 2 are displayed. Note that PyTorch

also applies Softmax (Section 2.1.3) to the outputs when calculating the cross

entropy loss, resulting in only positive loss values. The ability of the models to

generalise to unseen data is prioritised, thus rather than inspecting training loss

and accuracy, a focus is made on the validation metrics.

In strategy 1 the validation loss becomes increasingly stable after epoch 20

of 36 and in strategy the loss becomes more stable after an extreme spike at

epoch 173. The loss of strategy 2 is relatively stable between epochs 51 and

151 with a few larger spikes. Spiking in loss value is due to the use of batches

while training. The batches are a small subset of the data and are chosen at

random while loading it, however, all data samples have been loaded without

duplicates at the end of an epoch. The minimum loss of the validation phases
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(a) (b)

Figure 16: Validation accuracy per epoch in strategy 1 (a) and strategy 2 (b).

is not considered during the backward pass (Section 2.1.2) of the model and

is thus only for evaluation post training. Should the loss be extremely high it

would indicate overfitting on the training data. This is not the case in either

strategy. Note that validation loss is not inversely correlated to training loss,

we see this as the validation loss increases per epoch.

Figure 16 depicts the validation accuracies of strategies 1 and 2. Both strate-

gies display an increase in validation accuracy during training. Like the valida-

tion losses, the accuracies appear relatively volatile and is again due to the usage

of batches during training. The highest accuracy of strategy 1 is found at epoch

31 and for strategy 2 at epoch 149. The second strategy appears to be close to

converging to a narrower range of accuracy, whereas strategy 2 does not seem

to display this behaviour as of yet. As a model gets increasingly more confident

in its prediction, the Softmax transformed output (2.1.3) values, between 0 and

1, will increase towards 1 for the classes with highest activation and fall towards

0 for the rest. An uncertain model might have a correct prediction of [0.6, 0.4]

while a confident model predict may wrongly predict [0.1, 0.9]. The loss value

in the second case is much higher than the first. This can be observed by com-

paring the strategy 2 curves of Figures 15 and 16, where both the validation

accuracy and loss of the model increases. The minimum loss and maximum

accuracy is displayed in Table 5. After inspecting the results of strategy 1 and

2, a third strategy was conceptualized. Strategy 3 uses the weights of strategy

1 as initialization, see Section 3.7. It is therefore an attempt at continuing the

training of the strategy 1 model. This experiment too had a run time of ca. 14

hours.
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(a) (b)

Figure 17: Validation loss (a) and accuracy (b) per epoch in strategy 3, displayed
as a continuation of strategy 1.

Strategy 1 Strategy 2 Strategy 3
Max Validation Accuracy 0.624 0.642 0.650

Table 5: Validation accuracy of the 3 different training strategies (VGG-16).

In Figure 17 the validation loss and accuracy may be observed. The loss

appears less volatile in strategy 3 compared to strategy 1. Not only is it more

stable, but the maximum spiked value is much less than that of 2 out of 5 spikes

in strategy 1. The training procedure has thus become more stable even though

the learning rates, η = 0.01 are the same. This suggests that strategy 3 is indeed

a continued training of the model in strategy 1. The loss curve appears to move

closer towards convergence, but remains less stable than that of strategy 2. The

maximum accuracy of the strategy 3 model is found at epoch 11 of 33 (47 of 69

in continuation of strategy 1). It appears the model may be trained further for

better accuracy with strategy 3, although at the risk of overfitting. Observe in

5 that strategy 3 yielded the highest validation accuracy. For the final model

selection, the models with the highest validation accuracy during training was

chosen for each strategy, resulting in 3 trained VGG-16 models.

4.3 Test Evaluation

To properly evaluate the trained VGG-16 models, the models were applied to

the test set, then a confusion matrix for each class was computed. From the

confusion matrices the precision, recall and F1 score were also computed. For

a benchmark comparison, the ResNet50 was also applied on the same machine
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Class Precision Recall F1-score
Mary 0.92 0.91 0.92
Anthony 0.64 0.50 0.56
Dominic 0.54 0.76 0.63
Francis 0.68 0.80 0.74
Jerome 0.79 0.79 0.79
John 0.67 0.83 0.74
Paul 0.56 0.37 0.44
Peter 0.73 0.76 0.75
Sebastian 0.96 0.77 0.75
Magdalene 0.84 0.73 0.78

Macro Avg 0.73 0.72 0.72

Table 6: Precision, recall and f1 score of the ResNet50 from Milani et al [16]
applied to the test set on the machine from Section 4.1.

Sebastian Jerome John Anthony
Original Precision 0.91 0.71 0.58 0.73
Reapplication Precision 0.96 0.79 0.67 0.64

Original Recall 0.73 0.78 0.80 0.57
Reapplication Recall 0.77 0.79 0.83 0.50

Table 7: Significant differences between the reapplication results and original
results of the ResNet50 model from Milani et al. [16]

as described in Section 4.1. The evaluation of the model was slightly different

when applied on this machine. With slightly better results on some classes and

slightly worse on others. This can possibly be attributed to machine setup and

method of normalization. These results are displayed in Table 6. The most

significant differences in the reapplication results versus the reported results

from the paper of Milani et al [16] can be seen in Table 7. Here we see an

improvement on Saint Sebastian, Saint Jerome and John the Baptist, but a

setback on Anthony of Padua. Furthermore, the reapplication had a macro

average precision of 0.73 while the original paper reported 0.7117.

The precision, recall and F1-scores of the trained VGG-16 models are pre-

sented in Tables 8, 9 and 10. Similar traits of the three models include a macro

average recall of 25 and a high recall for the Virgin Mary class. The precision

for Mary is also high, but roughly 20 percentage points lower than the recall.
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Class Precision Recall F1-score
Mary 0.71 0.88 0.79
Anthony 0.33 0.07 0.12
Dominic 0.32 0.21 0.25
Francis 0.17 0.14 0.16
Jerome 0.47 0.32 0.38
John 0.47 0.08 0.14
Paul 0.10 0.06 0.07
Peter 0.32 0.19 0.24
Sebastian 0.41 0.21 0.28
Magdalene 0.47 0.37 0.41

Macro Avg 0.38 0.25 0.28

Table 8: Precision, Recall and F1-score for the model of strategy 1

Strategy 1 had a macro precision of 38 percentage points, strategy 2 had 48 and

strategy 3 had 61. The test set is imbalanced to the same degree as the training

and validation sets. It can be observed that as the macro average precision

of the models increase so does the recall value of class Virgin Mary, while the

precision of Virgin Mary is slightly lower in strategy 2 and 3 than in strategy

1. The migration of the class recalls towards Virgin Mary in strategy 2 and 3,

and the lower precision values of said class, suggests the models tend to predict

Virgin Mary incorrectly, but becomes more certain in other classes. We can

observe this in the fact that strategy 2 and 3 have a higher average macro pre-

cision than strategy 1. Furthermore, in relation to the other classes, strategy

1 exhibits prominence in the Saint Jerome, John the Baptiste, Saint Sebastian

and Mary Magdalene classes. For strategy 2 this is true not for John the Bap-

tiste, but the same classes listed for strategy 1, with the addition of Anthony of

Padua. Strategy 3 shows the same for the dominant classes in strategy 2 and

3, but also Saint Peter. Strategy 3 predicts with a relatively high precision but

tends to predominantly predict the Virgin Mary class, and the same can be said

for strategy 2. Strategy 1 is imprecise, but predicts other classes than Virgin

Mary more often than strategy 2 and 3.

4.4 CAM Inspection

For every image in the test set, the trained VGG-16 models and the ResNet50

model of Milani et al. [16] were applied and the CAMs were extracted from
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Class Precision Recall F1-score
Mary 0.69 0.92 0.79
Anthony 0.75 0.21 0.33
Dominic 0.33 0.14 0.20
Francis 0.26 0..08 0.12
Jerome 0.64 0.18 0.28
John 0.28 0.15 0.20
Paul 0.36 0.08 0.13
Peter 0.48 0.21 0.29
Sebastian 0.45 0.25 0.32
Magdalene 0.52 0.27 0.35

Macro Avg 0.48 0.25 0.30

Table 9: Precision, Recall and F1-score for the model of strategy 2

Class Precision Recall F1-score
Mary 0.69 0.94 0.80
Anthony 1.00 0.14 0.25
Dominic 0.21 0.14 0.17
Francis 0.26 0.14 0.19
Jerome 0.62 0.25 0.36
John 0.46 0.23 0.31
Paul 0.21 0.06 0.09
Peter 0.79 0.19 0.31
Sebastian 0.91 0.18 0.30
Magdalene 0.94 0.18 0.30

Macro Avg 0.61 0.25 0.31

Table 10: Precision, Recall and F1-score for the model of strategy 3
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Figure 18: CAMs of correct prediction of model from strategy 2. Left is the
VGG-16 model, right is the ResNet50. Mary Magdalene, Saint Sebastian and
Saint Jerome are depicted in descending order.

the activation for the predicted classes. In the case of a wrong prediction,

the CAM for the ground truth class was also extracted. The CAMs of three

classes from the data will be highlighted and inspected, namely Saint Sebastian,

Mary Magdalene and Saint Jerome. The selected CAMs for the models are

chosen based on the distinctive elements which describe the iconography of the

class. The most distinctive iconographic feature of Mary Magdalena depictions

is her ointment jar. Saint Sebastian is recognisable as tied to an erect object

and pierced by arrows. For Saint Jerome one of the most unique traits of his

iconography is the depiction of a lion alongside him in the desert. Models

from strategy 2 and 3 were the most promising and have thus been prioritized,

based on their higher macro average precision and the similarity of strategy 3

to strategy 1.

In Figure 18 are displayed CAM instances drawn from correct predictions

made by the model from strategy 2. In the case of Mary Magdalene, the model

did not base its prediction on the activation of the ointment jar. In one instance

it can be seen that the ointment jar is partially highlighted, however, this is likely

due to activation of the textures around it, as can be seen in the upper part

of the particular painting. The model instead seems to base its inference on

the combination of two textures; The curly hair of Mary Magdalene and her

skin. Activating based on the curly hair, is not an particular incorrect. Mary

Magdalene is indeed more often than not depicted with long curly hair. For

Saint Sebastian the model activates on regions around his stomach, and areas

near arrows, this seems to suggest the combination of a stomach texture and

26



Figure 19: CAMs of correct prediction of the model from strategy 3. Left is the
VGG-16 model, right is the ResNet50. Mary Magdalene, Saint Sebastian and
Saint Jerome are depicted in descending order.

the lines from the arrows activates this model. The model did not manage to

learn any features of the Lion depicted alongside Saint Jerome. It however, did

manage to find and activate on features of the desert landscape, which Saint

Jerome is often depicted in. Another feature that activated the model appears

to be his hand grabbing a book. Saint Jerome is often depicted with an open

book, as well.

Figure 19 displays the CAM instances for the model of strategy 3. On

paintings of Mary Magdalene this model found and based some of its correct

predictions on features of the ointment jar. Two images are shown where the

model activates based on the ointment jar. On the left-most one the ointment

jar is highlighted in its entirety, however it is quite likely that this coincides with

the textures of the robe. In the other image activation is shown on the edge

of the lid of the ointment jar, and part of the robe worn by Mary Magdalene.

In other instances this model also activates on the texture of her hair and the

robe she dons. On Saint Sebastian the model appears to activate based on the

cloth wrapped around his loin, in combination with the lines of arrows nearby.

In a single activation, the model activated based on the rope on the pillar Saint

Sebastian would be tied to, were his hands not free in the depiction. In the

depictions of Saint Jerome the model activates based on the lines in conjunction

with the textures in the mane of the lion depicted alongside him. Additionally it
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also activates based on the desk and book, which Saint Jerome is often depicted

with. In the top-right image of Figure 19 the state-of-the-art did not predict

Mary Magdalene correctly. It instead predicted the class Virgin Mary, based

on characters headdress. The CAM however belongs to the correct class, Mary

Magdalene.

4.5 Discussion

Sections 4.2 and 4.3 presented the quantitative results of the experiments. The

models do not appear to have been overfit to the training data and are able to

generalise to unseen data in the validation and test sets. Although the models

were chosen on a basis of their validation accuracy, the data set imbalance has

had a significant effect. By predicting the Virgin Mary class more frequently, the

models achieve a higher accuracy, since the data in the validation and test sets

consist of roughly 63.7% paintings of Virgin Mary. The models do not blindly

predict Virgin Mary to achieve this, as reflected in the max accuracies of the

model in Table 5. However, these facts in conjunction with the relatively low

recall in other classes, reflect a bias towards predicting the class Virgin Mary.

Furthermore, we see that model of strategy 3 is the most successful in terms

quantitative results on the test set, with a precision, recall and f1 score of 0.61,

0.25 and 0.31 as opposed to the state-of-the-art results of 0.73, 0.72 and 0.72.

The curve of validation accuracy during training, Figure 17, for strategy 3

suggests the accuracy did not yet converge. It is possible to further train this

model, at the risk of overfitting. However, a trend of increasing recall for Virgin

Mary and decreasing recall for other classes, in Tables, 8, 9 and 10 as training

continues, also indicates an increasing bias towards predicting class Virgin Mary.

As mentioned in Section 3.1, the imbalance of the data sets are proportional

to the other. This naturally means the data for Virgin Mary has a greater

variation of data samples. This is another factor that may increase recall for

Virgin Mary. As the models attempt to generalise on unseen data samples,

many of the otherwise unseen features may have appeared in some quantity of

the Virgin Mary samples in the training set. Many of these features are likely

not unique to Virgin Mary. When encountered in the validation and test phase,

these features have then only been observed in the Virgin Mary context, thus

the model predicts that class.

In section 4.4 qualitative results were displayed in the form of CAMs taken

from correctly predicted test samples. The models exhibited a minor ability
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to infer the classes based on the most distinct symbols from their respective

iconography. Although, these inferences were not based on the entire part of

the symbol. Instead, parts of the symbols such as lines, edges and textures

were highlighted, often in conjunction with an unrelated texture in nearby in

the painting. In the cases where the model did not infer based on the most

distinct symbol, the model had learnt to distinguish the class based on relatively

consistent features, such as the curly hair of Mary Magdalene, Saint Jerome

grabbing a book and loincloth or stomach of Saint Sebastian.

Although, the inferences are not based exclusively on the most distinct sym-

bols in the iconography of the saints, the CAMs showed that the models were

consistent in the features they extracted for inference. These features were also

common in the iconography of the respective classes. The bases of inference

were consistently a conjunction of low-level and mid-level features such as lines,

edges and textures. This indicates that the models lack the depth needed to

distinguish entire abstract objects like the entirety of the ointment jar of Mary

Magdalene, the face of the lion accompanying Saint Jerome, and the arrows

piercing Saint Sebastian. This is reflected in the fact that the over thrice deeper

state-of-the-art ResNet50 model was able to consistently base its inference on

the most distinctive symbols. Therefore, a convolutional baseline with a similar

depth to the VGG-16 model does not appear to be able to retrieve the most dis-

tinctive visual elements of the class iconography. However, the model is capable

of consistently retrieving other common elements in the class iconography.

The bases of the models were easily investigated with the addition of CAMs

and have thus shown good results in terms of model transparency and explain-

able AI. The f1-scores shown in tables 9 and 10 reflect the capability of infor-

mation retrieval by the models. The model of strategy 2 showed the greatest

performance on Saint Sebastian and Mary Magdalene, while the model of strat-

egy 3 showed the greatest performance on Saint Jerome, but was close to model

of strategy 2 in the other two classes.

5 Conclusion

This thesis has presented a baseline model in the form of a VGG-16 modified to

be fully convolutional, utilize batch normalization and output class activation

mappings through the use of a global average pooling layer. The model was

trained through three strategies, where strategy 2 and strategy 3 yielded the
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greater quantitative and qualitative results. The outputs of both models were

explainable by the class activation mappings. These mappings showed that the

models lacked the necessary depth of the model used in the state-of-the-art,

for distinguishing the classes based on the most distinctive visual elements in

their respective iconography. However, the two baseline models were capable of

distinguishing other relatively common visual elements used in the iconography

of these classes, including hair-style, nudity, clothing and books. Both mod-

els displayed promising f1-scores and can be used as a baseline for automatic

tagging.

Future work may include the following objectives;

• For the training strategies, different data augmentation methods, like ran-

dom affine transformations or random cropping, to attempt decrease in

bias towards the Virgin Mary class.

• Increases in model depth. While the state-of-the-art is a 50 layer residual

network, the increase of model depth can be instances of lower layer resid-

ual networks such as ResNet18 or ResNet34 [11] or the 19 layer variant of

VGG [25].

• Further investigation of the model inferences through other methods from

explainable AI, such as LIME [20].

30



References

[1] A. Amini, A. Soleimany, S. Karaman, and D. Rus. Spatial uncertainty

sampling for end-to-end control, 05 2018.

[2] E. Cetinic, T. Lipic, and S. Grgic. Fine-tuning convolutional neural net-

works for fine art classification. Expert Systems with Applications, 114:107–

118, 2018.

[3] L. Couprie. Iconclass: an iconographic classification system. Art Libraries

Journal, 8(2):32–49, 1983.

[4] E. J. Crowley and A. Zisserman. The art of detection. In European Con-

ference on Computer Vision, pages 721–737. Springer, 2016.

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet:

A large-scale hierarchical image database. In 2009 IEEE conference on

computer vision and pattern recognition, pages 248–255. Ieee, 2009.

[6] L. Dormehl. https://icdn6.digitaltrends.com/image/

digitaltrends/artificial_neural_network_1-791x388.jpg.

[7] FirelordPhoenix. https://computersciencewiki.org/index.php/File:

MaxpoolSample2.png.

[8] N. Gonthier, Y. Gousseau, S. Ladjal, and O. Bonfait. Weakly supervised

object detection in artworks. In Proceedings of the European Conference

on Computer Vision (ECCV) Workshops, September 2018.

[9] N. Gonthier, S. Ladjal, and Y. Gousseau. Multiple instance learning on

deep features for weakly supervised object detection with extreme domain

shifts, 2020.

[10] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virta-

nen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern,

M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del

R’ıo, M. Wiebe, P. Peterson, P. G’erard-Marchant, K. Sheppard, T. Reddy,

W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant. Array program-

ming with NumPy. Nature, 585(7825):357–362, Sept. 2020.

[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 770–778, 2016.

31

https://icdn6.digitaltrends.com/image/digitaltrends/artificial_neural_network_1-791x388.jpg
https://icdn6.digitaltrends.com/image/digitaltrends/artificial_neural_network_1-791x388.jpg
https://computersciencewiki.org/index.php/File:MaxpoolSample2.png
https://computersciencewiki.org/index.php/File:MaxpoolSample2.png


[12] Intellabs. http://intellabs.github.io/RiverTrail/tutorial/

images/convolution2.png.

[13] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network

training by reducing internal covariate shift, 2015.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with

deep convolutional neural networks. 60(6):84–90, May 2017.

[15] M. Lin, Q. Chen, and S. Yan. Network in network, 2014.

[16] F. Milani and P. Fraternali. A data set and a convolutional model for

iconography classification in paintings, 2020.

[17] Neurohive.io. https://neurohive.io/wp-content/uploads/2018/11/

vgg16-1-e1542731207177.png.

[18] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,

T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,

E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,

L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style,

high-performance deep learning library. In H. Wallach, H. Larochelle,
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Appendix A: Learning Resources.

https://cs231n.github.io/convolutional-networks/

https://paperswithcode.com/

https://pytorch.org/tutorials/

https://machinelearningmastery.com/

https://scikit-learn.org/stable/

https://stackoverflow.com/

https://stats.stackexchange.com/

https://www.christianiconography.info/

Notes taken while attending:

The 2020 Beeldverwerken (Image processing) course taught by Leo Dorst at the

University of Amsterdam.

Notes taken while attending:

The 2018 Leren (Learning) course taught at the University of Amsterdam.
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